effusion

permeability

spontaneous, uniform mixing caused by particle motion
effusion process in which gas particles pass through a tiny opening into an evacuated chamber or space
states that the rate of effusion for a gas is inversely proportional to the square root of its molar mass
the qualitative or quantitative measure of how easily a fluid can move through the spaces between particles in a substance
fluid
. compressibility
expansibility
pressure
psi
barometer
substance that has the ability to flow and take the shape of its container; a liquid or a gas
the physical ability of a substance to decrease its volume to fit into a container the physical ability of a gas to expand without a limit in an environment with a lower pressure
average force exerted per unit area when molecules collide with a boundary
unit of pressure equaling 14.7 at its standard
an apparatus that measures atmospheric
atm
2. Avogadro's law pressure by allowing it to support a column of liquid
unit of pressure; one at the standard
a law of gas behavior stating that the volume of a gas, at a constant temperature and pressure, is directly proportional to the number of moles of the gas
3. Boyle's Law
4. Charles's Law
5. combined gas
law
Dalton's law of
partial
pressures

Gay-Lussac's
Law
ideal gas

P1V1 = P2V2; volume and pressure of gases are inversely proportional
$\mathrm{V} 1 / \mathrm{T} 1=\mathrm{V} 2 / \mathrm{T} 2$; volume and temperature of gases are directly proportional
a law of gas behavior that combines Boyle's, Charles's, and Gay-Lussac's laws at STP a law of gas behavior stating that the total pressure of a mixture of gases equals the sum of the partial pressures of the constituent gases
$\mathrm{P} 1 / \mathrm{T} 1=\mathrm{P} 2 / \mathrm{T} 2$; pressure and temperature of gases are directly proportional
a hypothetical gas whose behavior is exactly predicted by the kinetic-molecular theory
19. ideal gas
law
combining
volumes
21. $\mathbf{m m H g}$ volume

Pa
STP
universal
gas constant
vapor pressure

Iaw of law of gas behavior formulated by Gay-Lussac's
molar the volume a mole of a gas occupies at STP
torr unit of pressure; 760 at the standard
law of gas behavior that relates pressure, volume, temperature, and amount for an ideal gas; $P V=n R T$ stating that the volumes of reacting gases and their products are expressed in ratios of small whole numbers
unit of pressure measured with mercury; 760 at the standard
unit of pressure; 101,300 at the standard standard temperature and pressure; one atm and 273 K
the constant R in the ideal gas law whose value and units depend on the units used for $\mathrm{P}, \mathrm{V}, \mathrm{n}$, and T
the pressure exerted by a vapor in equilibrium with its solid or liquid state at a specified temperature

